Difference between revisions of "Coalescent"
(→Coalescence of Two Lineages) |
(→Coalescence of Two Lineages) |
||
Line 18: | Line 18: | ||
<math>F(\text{coalescence at time }g)=-e^{-g/2N} + C</math> | <math>F(\text{coalescence at time }g)=-e^{-g/2N} + C</math> | ||
− | Because the CDF must <math>\lim_{g \to \infty}\left( -e^{-g/2N} + C \right)= 1</math> and <math>\lim_{g \to \infty} -e^{-g/2N}= 0</math> then <math>C = 1</math>. | + | Because by definition the CDF area must sum to one, <math>\lim_{g \to \infty}\left( -e^{-g/2N} + C \right)= 1</math>, and the limit of <math>\lim_{g \to \infty} -e^{-g/2N}= 0</math> then the constant must be one, <math>C = 1</math>. |
<math>F(\text{coalescence at time }g)=-e^{-g/2N} + 1</math> | <math>F(\text{coalescence at time }g)=-e^{-g/2N} + 1</math> |
Revision as of 04:35, 5 February 2016
Coalescence of Two Lineages
The PDF of an exponential distribution of the coalescence of two lineages in a diploid population of size N.
[math]P(\text{coalescence at time }g)=\frac{1}{2N}e^{-g/2N}[/math]
For example, the probability of two lineages coalescing in a small population of 20 individuals in exactly the ninth generations is 2%.
Integrate to get the CDF.
[math]F(\text{coalescence at time }g)=\int_0^g\frac{1}{2N}e^{-g/2N}[/math]
[math]F(\text{coalescence at time }g)=\frac{1}{2N}\int_0^g e^{-g\frac{1}{2N}}[/math]
[math]F(\text{coalescence at time }g)=\frac{1}{2N} \frac{-e^{-g\frac{1}{2N}}}{\frac{1}{2N}} + C[/math]
[math]F(\text{coalescence at time }g)=-e^{-g/2N} + C[/math]
Because by definition the CDF area must sum to one, [math]\lim_{g \to \infty}\left( -e^{-g/2N} + C \right)= 1[/math], and the limit of [math]\lim_{g \to \infty} -e^{-g/2N}= 0[/math] then the constant must be one, [math]C = 1[/math].
[math]F(\text{coalescence at time }g)=-e^{-g/2N} + 1[/math]
[math]F(\text{coalescence at time }g)=1-e^{-g/2N}[/math]
For example, there is a 95% probability that two lineages will coalesce within 6N generations.
[math]F(\text{coalescence at time }g)=0.95=1-e^{-g/2N}[/math]
[math]1-0.95=e^{-g/2N}[/math]
[math]\log_e 0.05=-\frac{g}{2N}[/math]
[math]-2N\log_e 0.05=g[/math]
[math]-2N\times-3=g[/math]
[math]6N=g[/math]