Coalescent

From Genetics Wiki
Revision as of 04:21, 5 February 2016 by Floyd (Talk | contribs) (Created page with "The PDF of an exponential distribution of the coalescence of two lineages in a diploid population of size ''N''. <math>P(\text{coalescence at time }g)=\frac{1}{2N}e^{-g/2N}</...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The PDF of an exponential distribution of the coalescence of two lineages in a diploid population of size N.

[math]P(\text{coalescence at time }g)=\frac{1}{2N}e^{-g/2N}[/math]

Integrate to get the CDF.

[math]F(\text{coalescence at time }g)=\int_0^g\frac{1}{2N}e^{-g/2N}[/math]

[math]F(\text{coalescence at time }g)=\frac{1}{2N}\int_0^g e^{-g\frac{1}{2N}}[/math]

[math]F(\text{coalescence at time }g)=\frac{1}{2N} \frac{-e^{-g\frac{1}{2N}}}{\frac{1}{2N}} + C[/math]

[math]F(\text{coalescence at time }g)=-e^{-g/2N} + C[/math]

Because the CDF must [math]\lim_{g \to \infty}\left( -e^{-g/2N} + C \right)= 1[/math] and [math]\lim_{g \to \infty} -e^{-g/2N}= 0[/math] then [math]C = 1[/math].

[math]F(\text{coalescence at time }g)=-e^{-g/2N} + 1[/math]

[math]F(\text{coalescence at time }g)=1-e^{-g/2N}[/math]