Difference between revisions of "Coalescence"

From Genetics Wiki
Jump to: navigation, search
(Sum of the Infinite Series)
(Sum of the Infinite Series)
Line 1: Line 1:
  
 
=Sum of the Infinite Series=
 
=Sum of the Infinite Series=
<math>\sum_{i=2}^\infty\frac{2N}{\frac{n(n-1)}{2}}=\sum_{i=2}^\infty\frac{4N}{n(n-1)}=4N\sum_{i=2}^\infty\frac{1}{n(n-1)}</math>
+
<math>\sum_{i=2}^\infty\frac{2N}{\frac{i(i-1)}{2}}=\sum_{i=2}^\infty\frac{4N}{i(i-1)}=4N\sum_{i=2}^\infty\frac{1}{i(i-1)}</math>
  
<math>4N\sum_{i=2}^\infty\frac{1}{n(n-1)}=4N\sum_{i=1}^\infty\frac{1}{n(n+1)}=4N\sum_{i=1}^\infty\frac{1}{n}-\frac{1}{n+1}</math>
+
<math>4N\sum_{i=2}^\infty\frac{1}{i(i-1)}=4N\sum_{i=1}^\infty\frac{1}{i(i+1)}=4N\sum_{i=1}^\infty\frac{1}{i}-\frac{1}{i+1}</math>

Revision as of 01:47, 18 September 2018

Sum of the Infinite Series

[math]\sum_{i=2}^\infty\frac{2N}{\frac{i(i-1)}{2}}=\sum_{i=2}^\infty\frac{4N}{i(i-1)}=4N\sum_{i=2}^\infty\frac{1}{i(i-1)}[/math]

[math]4N\sum_{i=2}^\infty\frac{1}{i(i-1)}=4N\sum_{i=1}^\infty\frac{1}{i(i+1)}=4N\sum_{i=1}^\infty\frac{1}{i}-\frac{1}{i+1}[/math]