Difference between revisions of "Probability of fixation"

From Genetics Wiki
Jump to: navigation, search
Line 1: Line 1:
 
<math>u(p)=\frac{1-e^{4N_esp}}{1-e^{4N_es}}</math>
 
<math>u(p)=\frac{1-e^{4N_esp}}{1-e^{4N_es}}</math>
  
If we are considering the initial frequency of a single new mutation in the population <math>p=1/(2N_e)</math>.
+
If we are considering the initial frequency of a single new mutation in the population ''p''=1/(2''N''<sub>''e''</sub>),
  
<math>u(p)_1=\frac{1-e^{4N_es\frac{1}{2N_e}}}{1-e^{4N_es}}=\frac{1-e^{2s}}{1-e^{4N_es}}</math>
+
<math>u(p)_1=\frac{1-e^{4N_es\frac{1}{2N_e}}}{1-e^{4N_es}}=\frac{1-e^{2s}}{1-e^{4N_es}}</math>.
 +
 
 +
If 4''N''<sub>''e''</sub>''s'' is large.
 +
 
 +
<math>u(p)_2\approx\frac{1-e^{2s}}{1}=1-e^{2s}</math>.

Revision as of 06:40, 16 September 2018

[math]u(p)=\frac{1-e^{4N_esp}}{1-e^{4N_es}}[/math]

If we are considering the initial frequency of a single new mutation in the population p=1/(2Ne),

[math]u(p)_1=\frac{1-e^{4N_es\frac{1}{2N_e}}}{1-e^{4N_es}}=\frac{1-e^{2s}}{1-e^{4N_es}}[/math].

If 4Nes is large.

[math]u(p)_2\approx\frac{1-e^{2s}}{1}=1-e^{2s}[/math].