Difference between revisions of "Carareto et al. 1997"
(Created page with "=Citation= Carareto, C. M., Kim, W., Wojciechowski, M. F., O'grady, P., Prokchorova, A. V., Silva, J. C., & Kidwell, M. G. (1997). Testing transposable elements as genetic dri...") |
(No difference)
|
Revision as of 22:17, 3 October 2018
Citation
Carareto, C. M., Kim, W., Wojciechowski, M. F., O'grady, P., Prokchorova, A. V., Silva, J. C., & Kidwell, M. G. (1997). Testing transposable elements as genetic drive mechanisms using Drosophila P element constructs as a model system. Genetica, 101(1), 13-33.
Links
Published Abstract
The use of transposable elements (TEs) as genetic drive mechanisms was explored using Drosophila melanogaster as a model system. Alternative strategies, employing autonomous and nonautonomous P element constructs were compared for their efficiency in driving the ry+ allele into populations homozygous for a ry- allele at the genomic rosy locus. Transformed flies were introduced at 1%, 5%, and 10% starting frequencies to establish a series of populations that were monitored over the course of 40 generations, using both phenotypic and molecular assays. The transposon-borne ry+ marker allele spread rapidly in almost all populations when introduced at 5% and 10% seed frequencies, but 1% introductions frequently failed to become established. A similar initial rapid increase in frequency of the ry+ transposon occurred in several control populations lacking a source of transposase. Constructs carrying ry+ markers also increased to moderate frequencies in the absence of selection on the marker. The results of Southern and in situ hybridization studies indicated a strong inverse relationship between the degree of conservation of construct integrity and transposition frequency. These finding have relevance to possible future applications of transposons as genetic drive mechanisms.