Difference between revisions of "Probability of fixation"

From Genetics Wiki
Jump to: navigation, search
(Notes)
(Notes)
Line 20: Line 20:
 
This is derived from  
 
This is derived from  
  
<math>u(p) = \frac{\int_0^p G(x)dx}{\int_0^1 G(x)dx}</math>,  
+
<math>u(p) = \frac{\int_0^p G(x)\, \mbox{d} x}{\int_0^1 G(x)\, \mbox{d} x}</math>,  
  
 
equation 3 of [[Kimura 1962]].
 
equation 3 of [[Kimura 1962]].
Line 28: Line 28:
 
The change in allele frequency (<math>\delta p</math>) over short periods of time (<math>\delta t</math>) is
 
The change in allele frequency (<math>\delta p</math>) over short periods of time (<math>\delta t</math>) is
  
<math>u(p, t+\delta t) = \int f(p, p+\delta p; \delta t) u(p+ \delta p, t) d(\delta p)</math>,
+
<math>u(p, t+\delta t) = \int f(p, p+\delta p; \delta t) u(p+ \delta p, t) \, \mbox{d} (\delta p)</math>,
  
 
integrating over all values of changes in allele frequency (<math>\delta p</math>).
 
integrating over all values of changes in allele frequency (<math>\delta p</math>).
Line 34: Line 34:
 
A mean and variance of the change in allele frequency (''p'') per generation are defined as
 
A mean and variance of the change in allele frequency (''p'') per generation are defined as
  
<math>M_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p) f(p, p+\delta p; \delta t) d(\delta p)</math>
+
<math>M_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p) f(p, p+\delta p; \delta t) \, \mbox{d} (\delta p)</math>
  
<math>V_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p)^2 f(p, p+\delta p; \delta t) d(\delta p)</math>
+
<math>V_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p)^2 f(p, p+\delta p; \delta t) \, \mbox{d} (\delta p)</math>

Revision as of 07:15, 23 September 2018

This was derived in Kimura 1962.

[math]u(p)=\frac{1-e^{4N_esp}}{1-e^{4N_es}}[/math]

If we are considering the initial frequency of a single new mutation in the population p=1/(2Ne),

[math]u(p)_1=\frac{1-e^{4N_es\frac{1}{2N_e}}}{1-e^{4N_es}}=\frac{1-e^{2s}}{1-e^{4N_es}}[/math].

And if 4Nes is large

[math]u(p)_2\approx\frac{1-e^{2s}}{1}=1-e^{2s}[/math].

[math]e^{2s}\approx 1+2s[/math]

[math]u(p)_2 \approx 1-e^{2s} \approx 1-1+2s = 2s[/math].

This agrees with the results of Fisher 1930 and Wright 1931.

Notes

This is derived from

[math]u(p) = \frac{\int_0^p G(x)\, \mbox{d} x}{\int_0^1 G(x)\, \mbox{d} x}[/math],

equation 3 of Kimura 1962.

[math]u(p,t)[/math] is the probability of fixation of an allele at frequency p within t generations.

The change in allele frequency ([math]\delta p[/math]) over short periods of time ([math]\delta t[/math]) is

[math]u(p, t+\delta t) = \int f(p, p+\delta p; \delta t) u(p+ \delta p, t) \, \mbox{d} (\delta p)[/math],

integrating over all values of changes in allele frequency ([math]\delta p[/math]).

A mean and variance of the change in allele frequency (p) per generation are defined as

[math]M_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p) f(p, p+\delta p; \delta t) \, \mbox{d} (\delta p)[/math]

[math]V_{\delta p}=\lim_{\delta t \to 0} \frac{1}{\delta t} \int (\delta p)^2 f(p, p+\delta p; \delta t) \, \mbox{d} (\delta p)[/math]