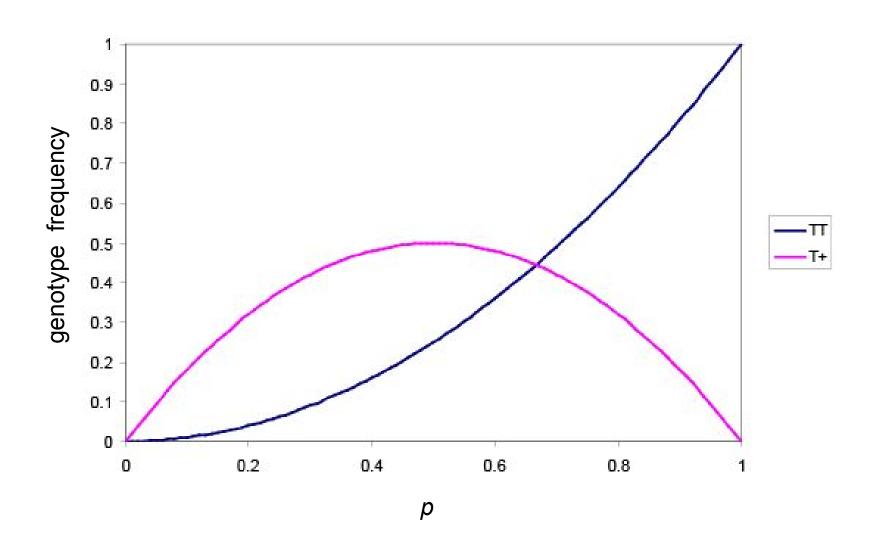
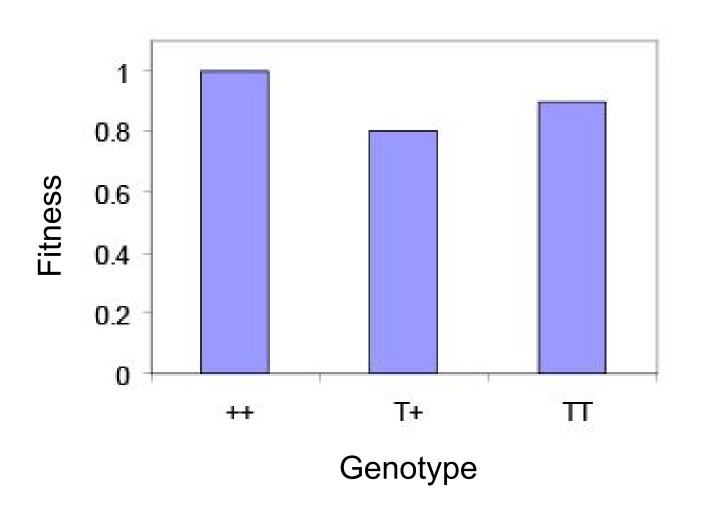


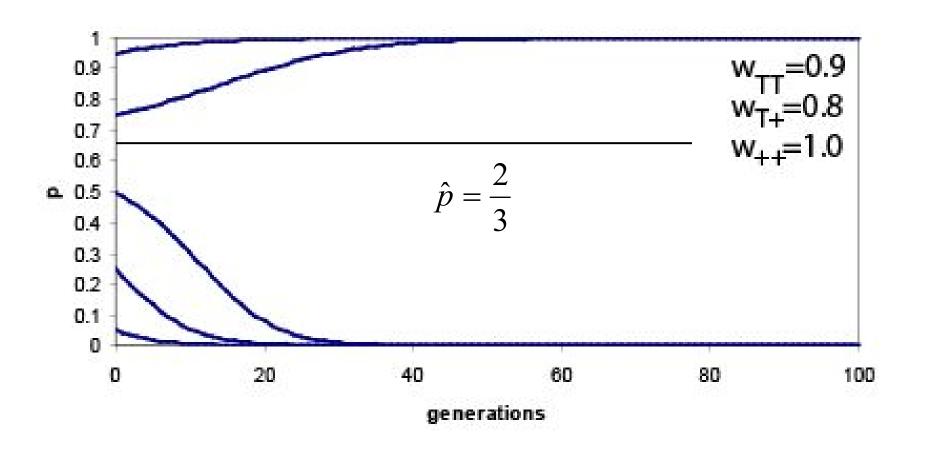
#### A rare allele spends more time as a heterozygote than a homozygote



## A heterozygote disadvantage corresponds to a rare allele disadvantage

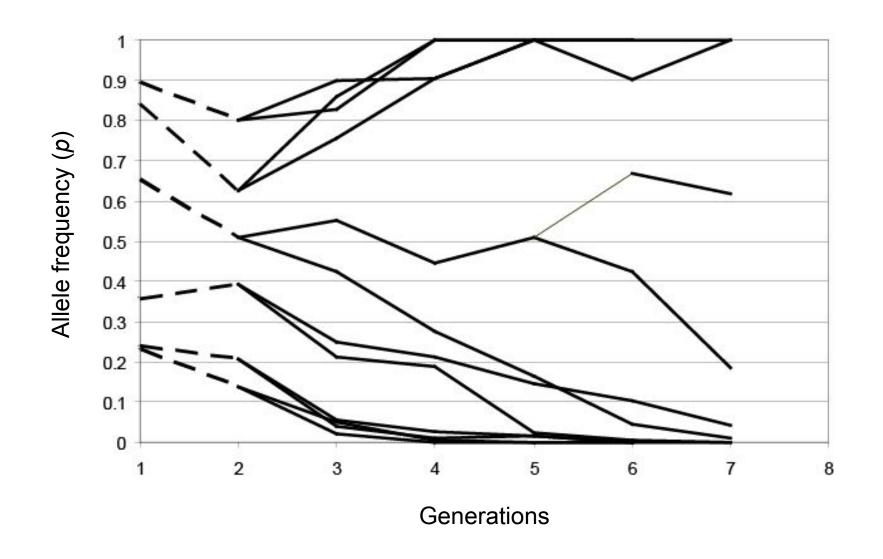


With underdominance, if starting at a high enough frequency, an allele less fit than wildtype can stably fix in a population.

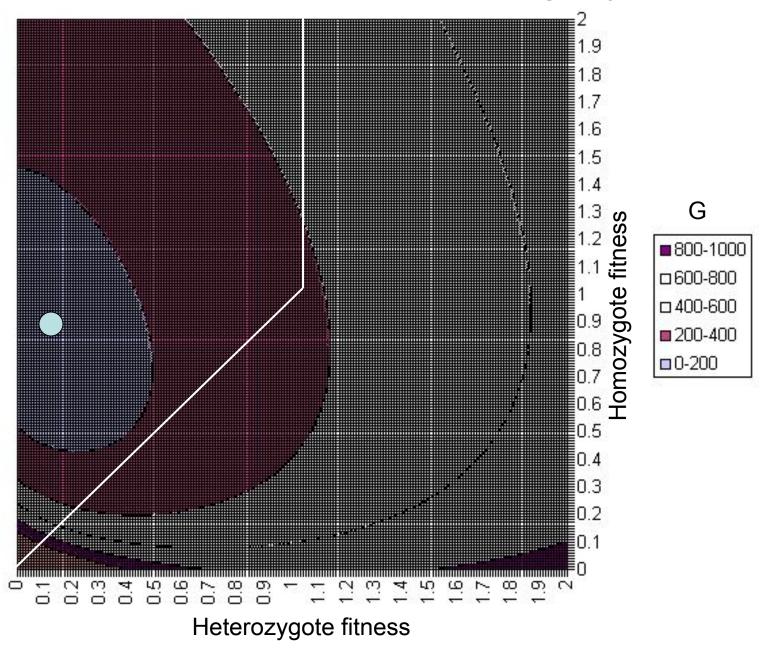




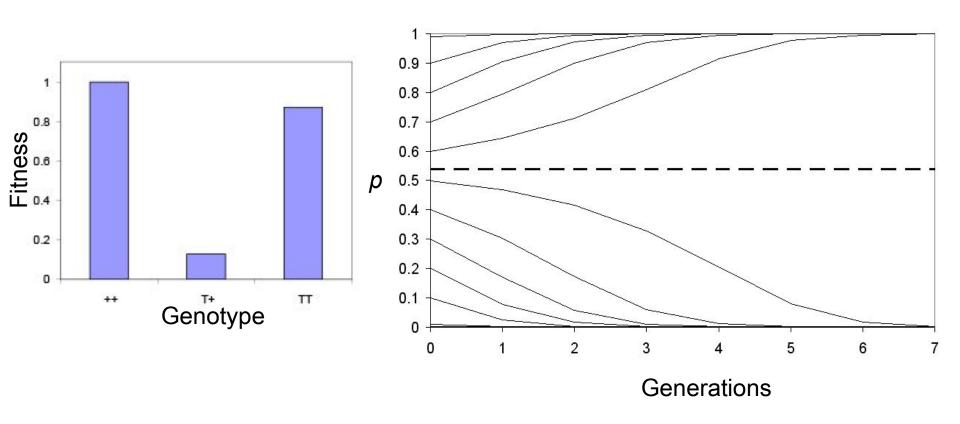
#### Allele frequency changes over replicated populations



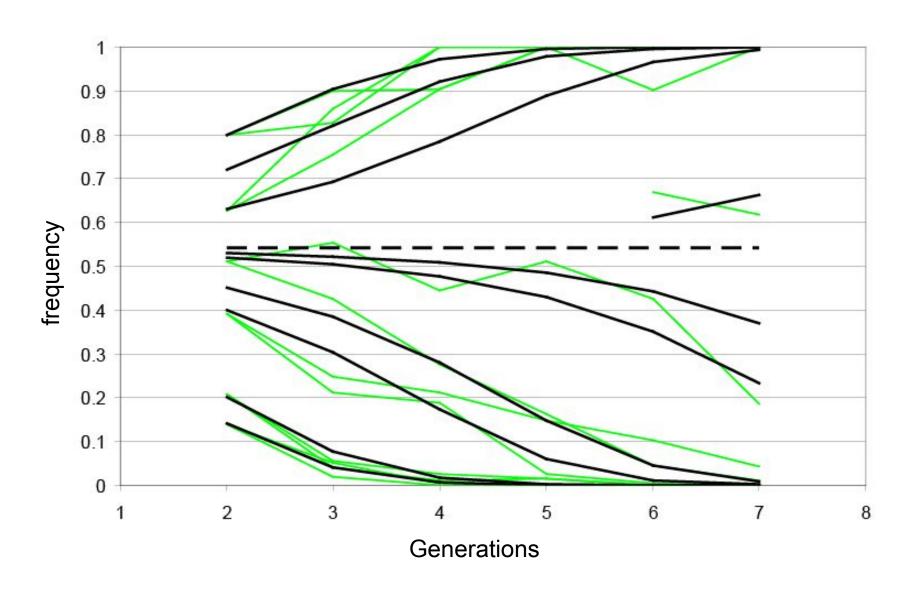
#### The model is fit to the data to estimate relative genotype fitnesses



## The maximum-likelihood estimate predicts the following fitness configuration and changes in allele frequency.



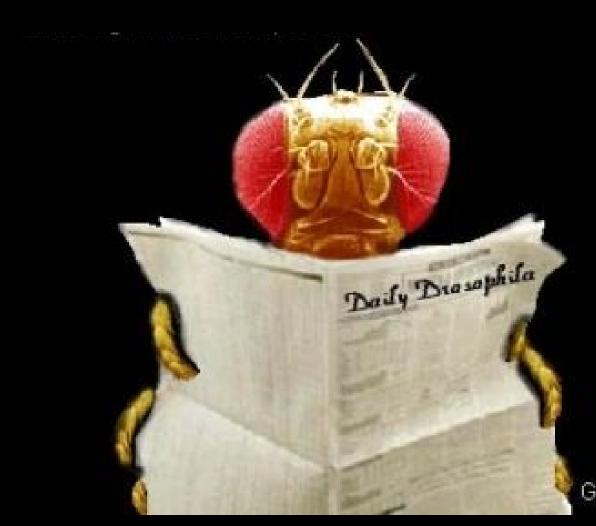
### **Theory and Data**



# Stability of an underdominant polymorphism in the presence of migration

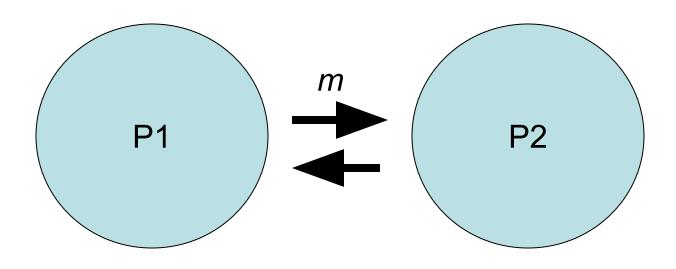
Philipp M. Altrock<sup>a\*</sup>, Arne Traulsen<sup>a†</sup>, R. Guy Reeves<sup>b‡</sup>, and Floyd A. Reed<sup>b\*</sup>

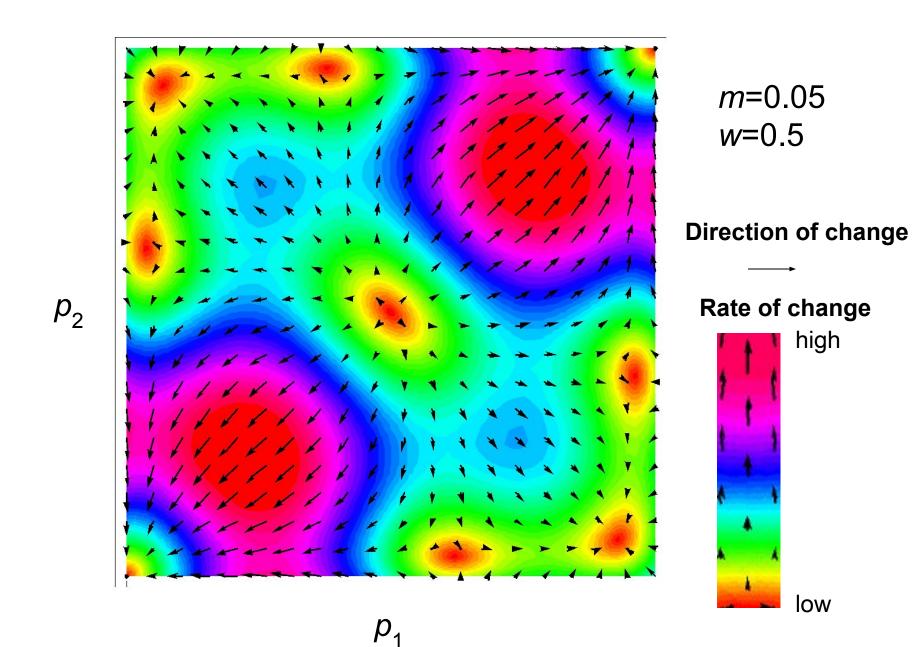
In revision at JTB

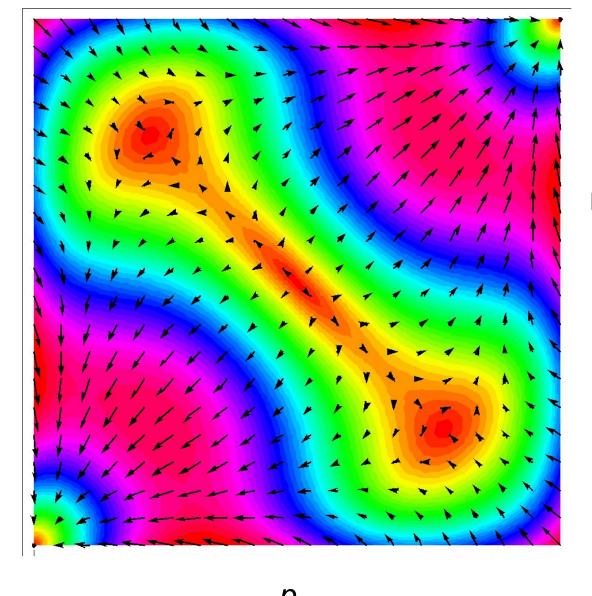


G. Pryor 2003

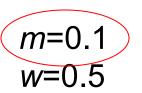
The simplest model to investigate the spatial properties of underdominance is one of a single locus in two populations exchanging migrants each generation.





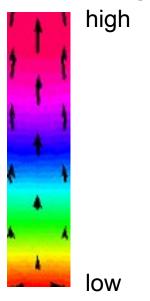


 $p_2$ 

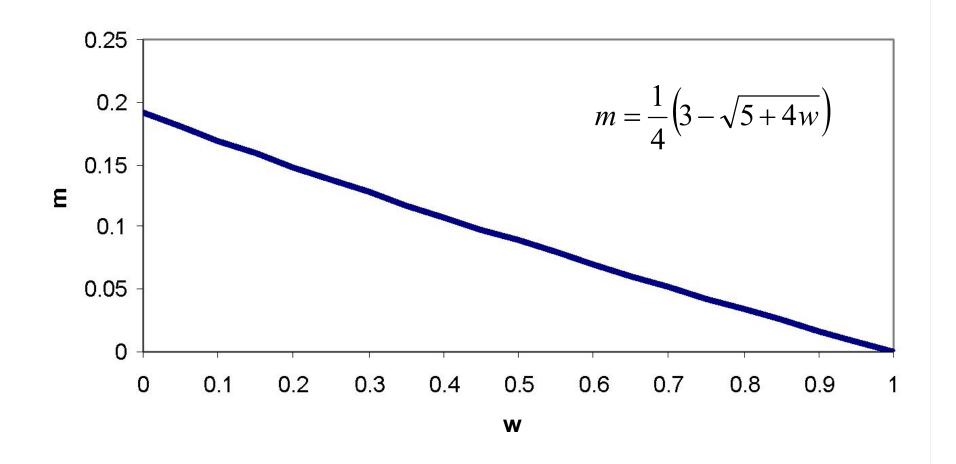


#### **Direction of change**

#### Rate of change



The maximum migration rate that allows local underdominant stability.



Prediction of maximum migration rate with asymmetric fitness.

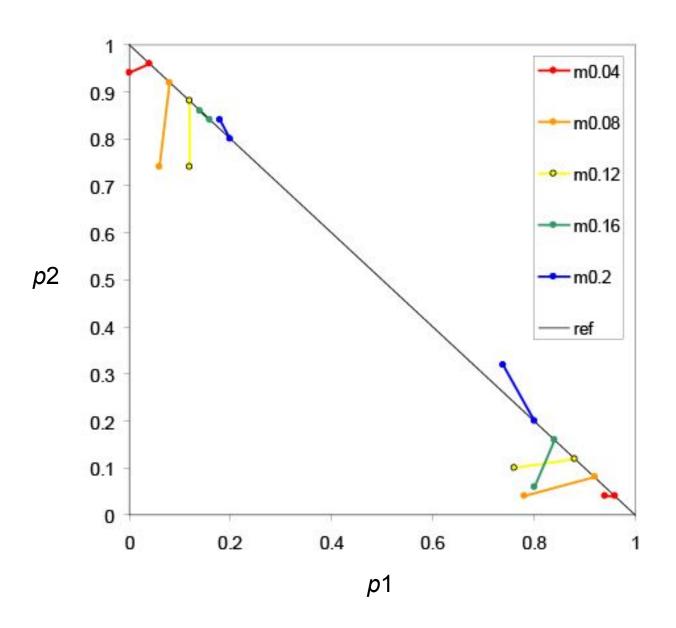
$$\mu_{2}(\omega) = \frac{1}{4} \left( 3 - \sqrt{5 + 4\omega} \right)$$

$$\mu_{w}(\omega, \nu) = \mu_{3}(\omega, \nu)(1 - \nu) + \frac{\mu_{2}(\omega)(\nu - \omega)^{2}}{(1 - \omega)^{2}}.$$

$$\mu_{3}(\omega, \nu) = \frac{\nu(2 - 2\omega + \nu) - \omega^{2} - 2\sqrt{\nu(1 + \nu - 2\omega)(\nu - \omega^{2})}}{(\nu - \omega)^{2}}.$$

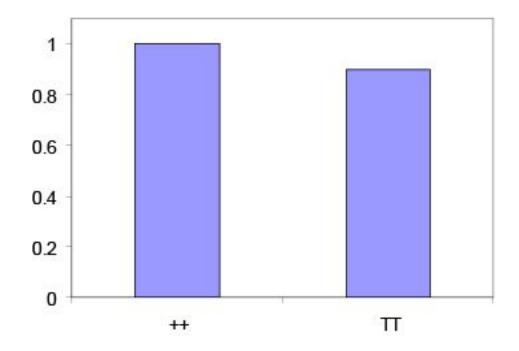
or about 14% migration

#### First generation, 2-population results!

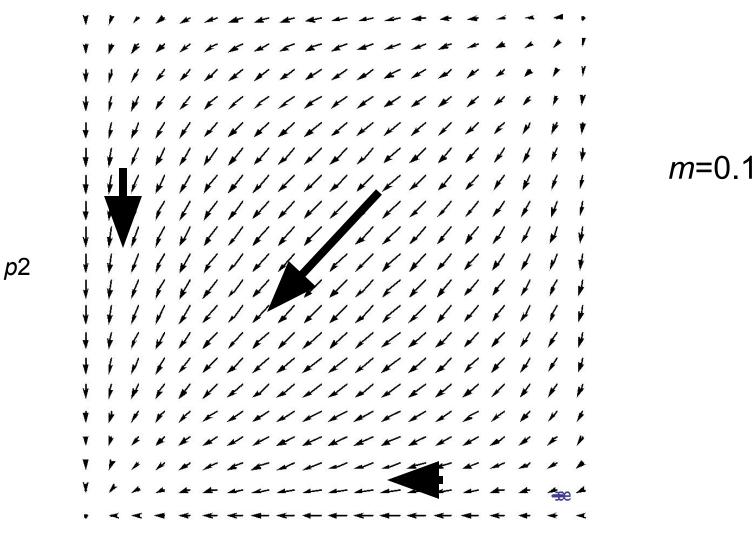


So far, first generation, only homozygotes have been present.

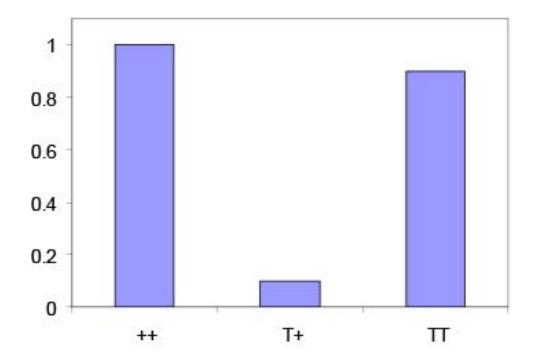
This is directional selection with no spatial stability.



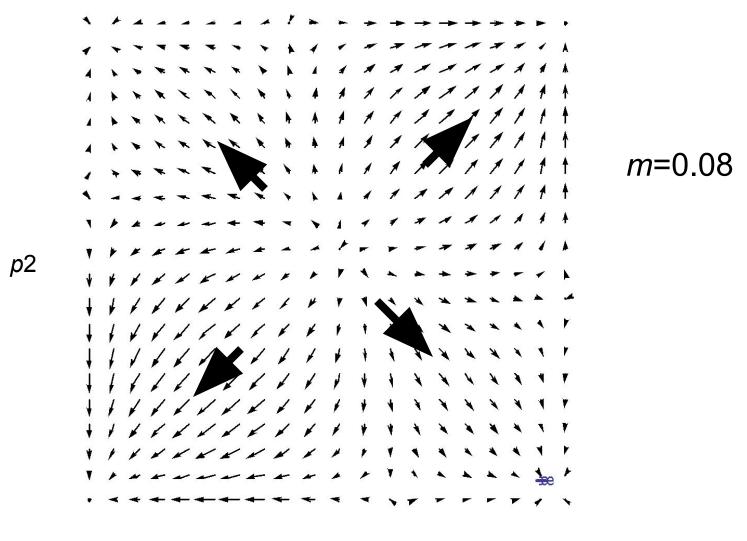
#### **Directional Selection**



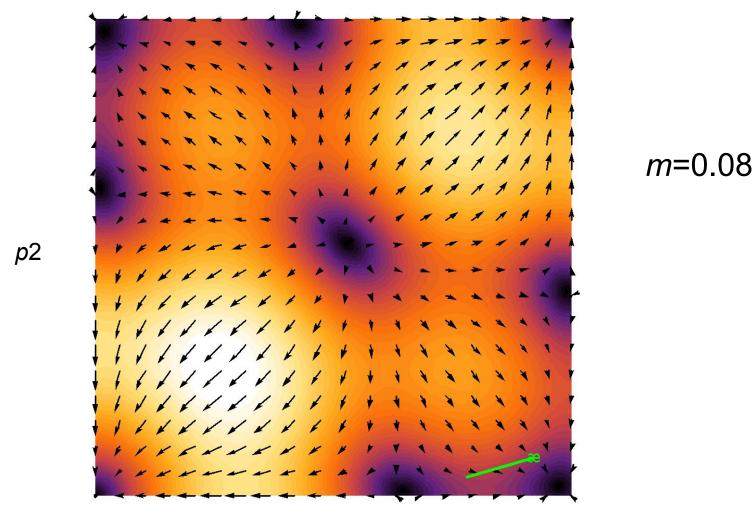
In the next generation (next week!) heterozygotes should appear and give a stabilizing effect.



#### Underdominance, pushing toward the corners

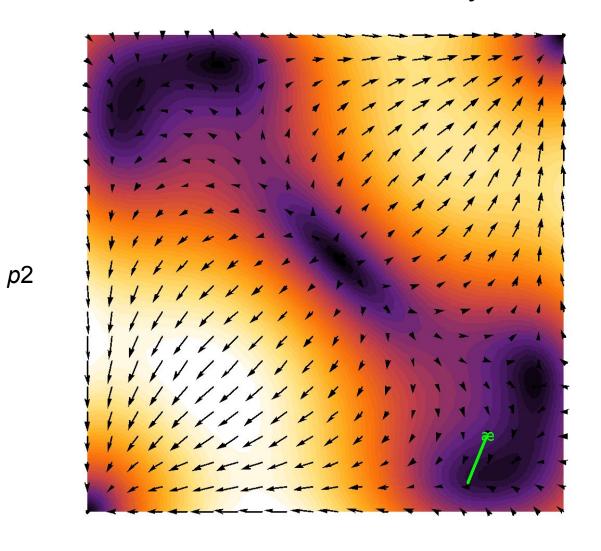


#### Potential period of stability



*p*1

#### No stability



m=0.16

*p*1

#### Conclusion

We have created an underdominant system!

In a large population, it (should) allow local stable transformations with migrations rates as high as 14%!

#### **Next:**

Follow more generations

Estimate effective population size in our experiments

Simulate the effects of genetic drift on stability.

Develop a more complete model of the effects of mating prior to migration (and mating discrimination)

#### Acknowledgements

Philipp Altrock – Theory (and fly counting!)

Chip Aquadro (Cornell U) – Global Fly Lines

Kevin Cook (Indiana U) – Drosophila Genetics

Chaitanya Gokhale – Theory

Kent Golic (U of Utah) – FLP-FRT translocations

Fred Gould (NC State U) – Gene Drive Systems

Francis Jiggins (U of Edinburgh) – Sigma Virus

Kata Langer – Internship

The Max Planck Society – Support

Anita Möller – Technician

Hagen Müller – Internship

The Monday Theory/Chalk Talk Group (MPI Plön)

**Guy Reeves – Engineering and everything else!** 

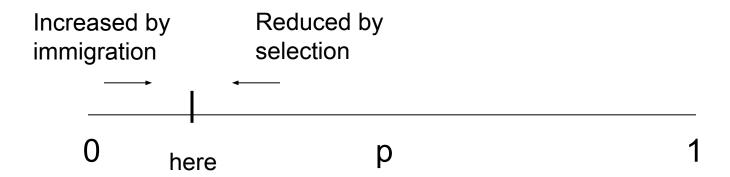
Diethard Tautz – Support

Arne Traulsen – Theory

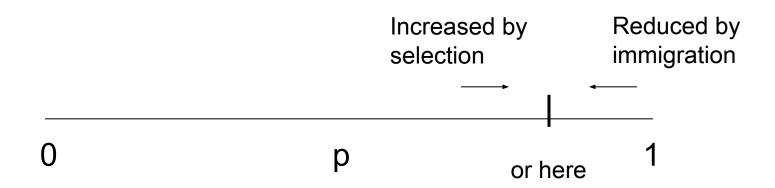
Kata Weiß – Internship



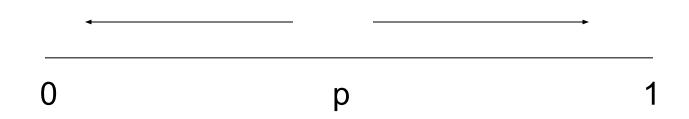
In contrast to the single-population prediction, underdominance can maintain a stable polymorphism among multiple populations connected by migration.



In contrast to the single-population prediction, underdominance can maintain a stable polymorphism among multiple populations connected by migration.

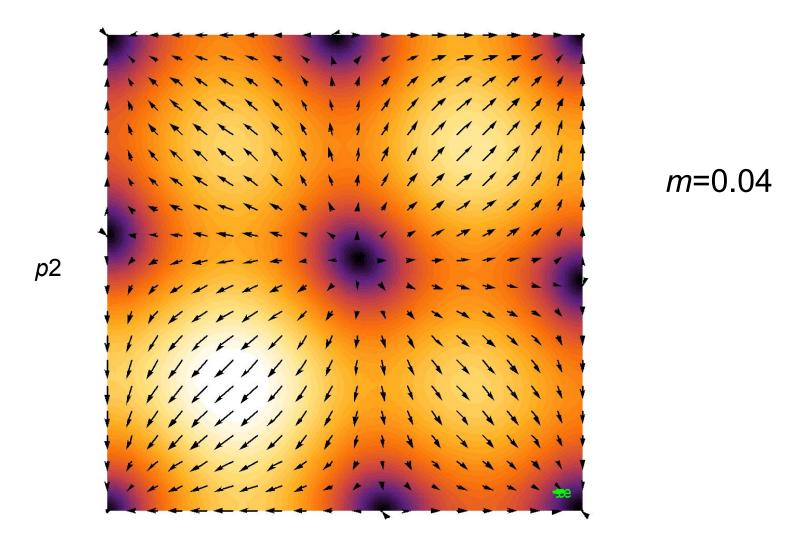


In contrast to the single-population prediction, underdominance can maintain a stable polymorphism among multiple populations connected by migration.

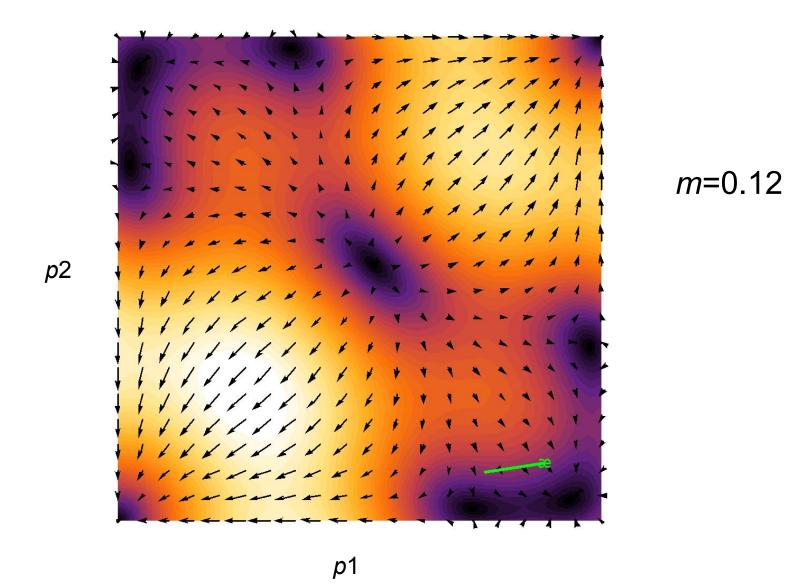


However, if the migration rate is too high, the system behaves like a single population and polymorphism is lost.

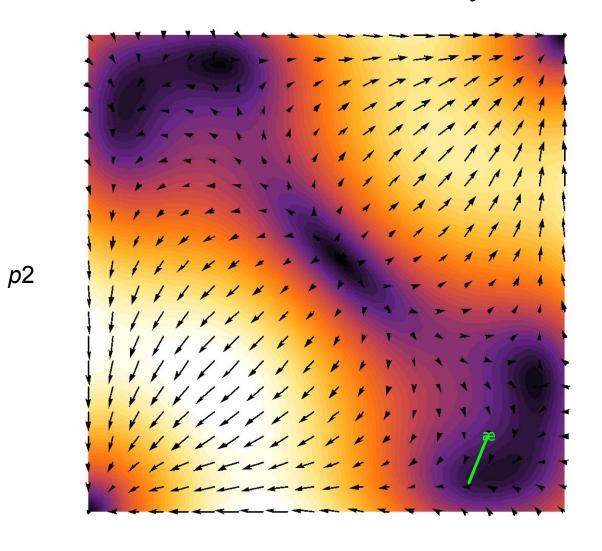
#### Potential period of stability



#### Potential period of stability



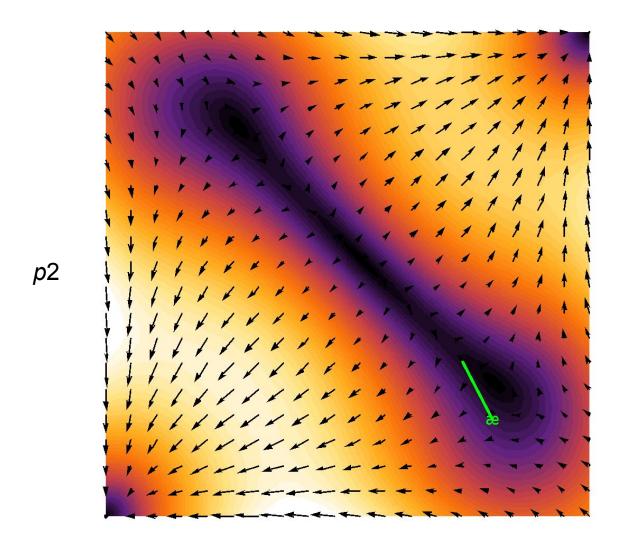
#### No stability



m=0.16

*p*1

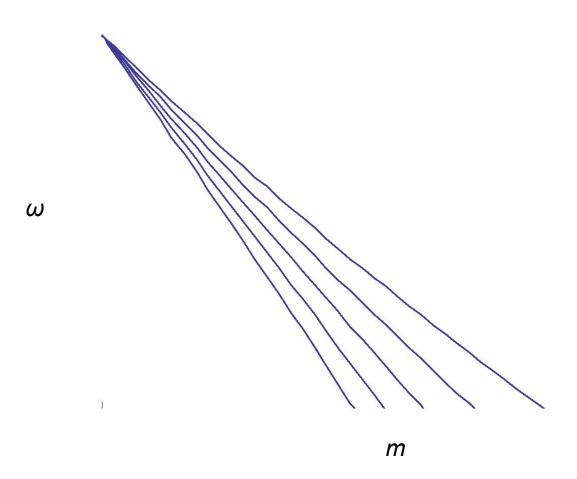
#### No stability



m=0.2

*p*1

Mating prior to migration has a destabilizing effect.



The G-test (or likelihood ratio or maximum likelihood test) is similar to the chi-square test.

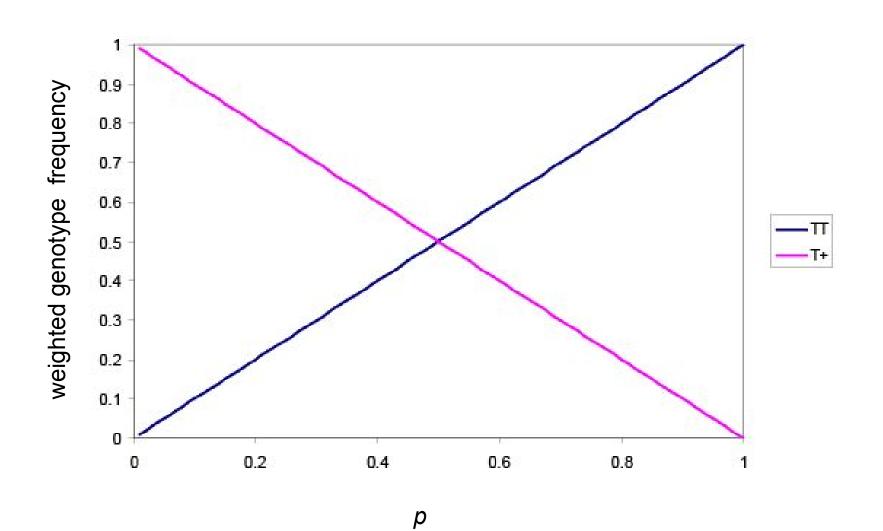
$$\chi^2 = \sum_{ij} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

$$G = 2\sum_{ij} O_{ij} \ln \left( \frac{O_{ij}}{E_{ij}} \right)$$

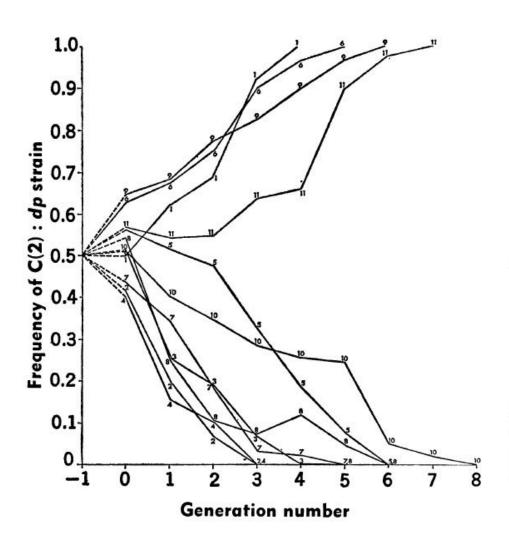
Expected values can be generated according to the Wright-Fisher model. Stochastic drift is not included in the model but is not expected to bias results (however the more data the better to average this out). G is expected to the Chi-square distributed.

Suggested/used for population bottle data by Clark *et al.* 1989

#### Weighted by number of alleles in each genotype



## Early work failed to achieve underdominance with wildtype heterozygotes.



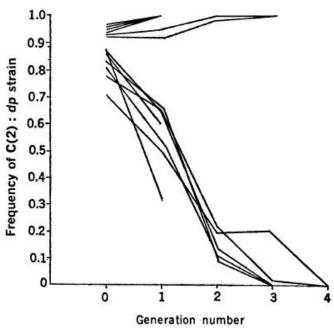


Fig. 6 (left). Change in frequency of C(2):dp strain in competition with C(3):ri strain. The unstable point is about 0.5. Fig. 7 (right). Change in frequency of C(2):dp strain in competition with structurally wild-type strain. The unstable point is about 0.9.

Foster et al. (1972)