User Tools

Site Tools


bayesian_statistics

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
bayesian_statistics [2019/10/03 00:38]
floyd
bayesian_statistics [2019/10/03 02:40]
floyd
Line 18: Line 18:
 $$P(A|B)P(B)=P(A \cap B)\mbox{.}$$ $$P(A|B)P(B)=P(A \cap B)\mbox{.}$$
 (Note to draw a Venn diagram here to illustrate.) (Note to draw a Venn diagram here to illustrate.)
-For example, you go to a pet store looking for a small mammal with white fur. There is a box and you are told that one out of six animals in the box have white fur and that there are both eight mice and ten hamsters in the box for a total of 18 individuals. 2 of the mice have white fur and 1 of the hamsters have white fur. You reach in and can feel that you have grabbed a mouse but can't see it yet. Given that you have a mouse (finish later)+For example, you go to a pet store looking for a small mammal with white fur. There is a box and you are told that one out of six animals in the box have white fur and that there are both eight mice and ten hamsters in the box for a total of 18 individuals. 2 of the mice have white fur and 1 of the hamsters have white fur. Before you reach in the box you know the probability of grabbing an individual with white fur is $3/18 = 0.1\bar{6}$ You reach in and can feel that you have grabbed a mouse but can't see it yet. Given that you have a mouse the probability of white fur is now 
 +$$P(\mbox{white}|\mbox{mouse})=\frac{\mbox{white}\cap\mbox{mouse}}{P(\mbox{mouse})}=\frac{2/18}{8/18}=1/4$$ 
 +and indeed 1/4 of the mice have white fur (2 out of 8). This is an awkward way to calculate the probability, but it does show the equation and relationship between the probabilities work. 
  
-Once we accept the relationships between the probabilities and equalities we can easily rearranged the system to the classical Bayesian equation +Once we accept the relationships between the probabilities we can easily rearranged the system to the classical Bayesian equation 
 $$P(M|D) P(D) = P(D|M) P(M)\mbox{,}$$ $$P(M|D) P(D) = P(D|M) P(M)\mbox{,}$$
 $$P(M|D) = \frac{P(D|M) P(M)}{P(D)}\mbox{.}$$ $$P(M|D) = \frac{P(D|M) P(M)}{P(D)}\mbox{.}$$
Line 26: Line 28:
 Let's bring this into our example.  Let's bring this into our example. 
 $$P(M_1|D) = \frac{P(D|M_1) P(M_1)}{P(D)}\mbox{.}$$ $$P(M_1|D) = \frac{P(D|M_1) P(M_1)}{P(D)}\mbox{.}$$
-We saw above that $P(D) = P(M_1) P(D|M_1) + P(M_2) P(D|M_2)\mbox{,}$ which makes this a bit more intutitve when we substitute it in. +We saw above that $P(D) = P(M_1) P(D|M_1) + P(M_2) P(D|M_2)\mbox{,}$ which makes this a bit more intuitive when we substitute it in. 
 $$P(M_1|D) = \frac{P(D|M_1) P(M_1)}{ P(D|M_1) P(M_1) +  P(D|M_2) P(M_2)}$$ $$P(M_1|D) = \frac{P(D|M_1) P(M_1)}{ P(D|M_1) P(M_1) +  P(D|M_2) P(M_2)}$$
 The equation is really a fraction out of the total of all possibilities (of the data under all models).  The equation is really a fraction out of the total of all possibilities (of the data under all models). 
Line 32: Line 34:
 $$P(M_1|D) = \frac{0.1 \times 0.05}{ 0.1 \times 0.05 + 1 \times 0.95} = \frac{0.005}{0.955} \approx 0.00524$$ $$P(M_1|D) = \frac{0.1 \times 0.05}{ 0.1 \times 0.05 + 1 \times 0.95} = \frac{0.005}{0.955} \approx 0.00524$$
  
-This $P(M_1|D)  0.004775$ is known as the posterior probability---the probability of our hypothesis after we have incorporated our prior and newly observed data. So, the observation of a single +/+ offspring brought the probability of a $t$/+ father down from 5% to approximatly 1/2%. Congratulations, you are doing Bayesian statistics. +This $P(M_1|D) \approx  0.00524$ is known as the posterior probability---the probability of our hypothesis after we have incorporated our prior and newly observed data. So, the observation of a single +/+ offspring brought the probability of a $t$/+ father down from 5% to approximately 1/2%. Congratulations, you are doing Bayesian statistics. 
  
 What if we observed a second +/+ offspring? The probability of the data under the first hypothesis is now $P(D|M_1) = 0.1^2=0.01$ and $P(D|M_2) = 1^2=1$. What if we observed a second +/+ offspring? The probability of the data under the first hypothesis is now $P(D|M_1) = 0.1^2=0.01$ and $P(D|M_2) = 1^2=1$.
Line 45: Line 47:
  
 Let's say that we didn't see a heterozygous offspring; how many observations are enough to be reasonably confident that the male parent was a +/+ homozygote? Bayes factor is a proposed way to address this. It is a ratio of the two probabilities of the data given the models (here $M_2$ is in the numerator because it has more support from the data).  Let's say that we didn't see a heterozygous offspring; how many observations are enough to be reasonably confident that the male parent was a +/+ homozygote? Bayes factor is a proposed way to address this. It is a ratio of the two probabilities of the data given the models (here $M_2$ is in the numerator because it has more support from the data). 
-$$K = \frac{P(D|M_2)}{P(D|M_1} $$+$$K = \frac{P(D|M_2)}{P(D|M_1)} $$
 So with the observation of a single +/+ offspring $K_1 = \frac{1}{0.1} = 10$. So with the observation of a single +/+ offspring $K_1 = \frac{1}{0.1} = 10$.
 Two +/+ offspring gives $K_2 = \frac{1}{0.01} = 100$.  Two +/+ offspring gives $K_2 = \frac{1}{0.01} = 100$. 
bayesian_statistics.txt · Last modified: 2019/10/03 18:21 by floyd